
Use the OverlayFS storage driver
Estimated reading time: 18 minutes

OverlayFS is a modern union filesystem that is similar to AUFS, but faster and with a

simpler implementation. Docker provides two storage drivers for OverlayFS: the

original overlay , and the newer and more stable overlay2 .

This topic refers to the Linux kernel driver as OverlayFS  and to the Docker storage

driver as overlay  or overlay2 .

! ! NoteNote: If you use OverlayFS, use the : If you use OverlayFS, use the overlay2  driver rather than driver rather than

the the overlay  driver, because it is more efficient in terms of inode driver, because it is more efficient in terms of inode

utilization. To use the new driver, you need version 4.0 or higher ofutilization. To use the new driver, you need version 4.0 or higher of

the Linux kernel, or RHEL or CentOS using version 3.10.0-514 andthe Linux kernel, or RHEL or CentOS using version 3.10.0-514 and

above.above.

For more information about differences between overlay  vs overlay2 ,

check Docker storage drivers

(https://docs.docker.com/storage/storagedriver/select-storage-driver/).

Prerequisites
OverlayFS is supported if you meet the following prerequisites:

The overlay2  driver is supported on Docker CE, and Docker EE 17.06.02-ee5
and up, and is the recommended storage driver.
Version 4.0 or higher of the Linux kernel, or RHEL or CentOS using version
3.10.0-514 of the kernel or higher. If you use an older kernel, you need to use
the overlay  driver, which is not recommended.

The overlay  and overlay2  drivers are supported on xfs  backing

filesystems, but only with d_type=true  enabled.

Use xfs_info  to verify that the ftype  option is set to 1 . To format an

xfs  filesystem correctly, use the flag -n ftype=1 .

https://docs.docker.com/storage/storagedriver/select-storage-driver/


"  WarningWarning: Running on XFS without d_type support now causes

Docker to skip the attempt to use the overlay  or overlay2  driver.

Existing installs will continue to run, but produce an error. This is to

allow users to migrate their data. In a future version, this will be a fatal

error, which will prevent Docker from starting.

Changing the storage driver makes existing containers and images inaccessible
on the local system. Use docker save  to save any images you have built or
push them to Docker Hub or a private registry before changing the storage
driver, so that you do not need to re-create them later.

Configure Docker with the overlay  or
overlay2  storage driver

It is highly recommended that you use the overlay2  driver if possible, rather than

the overlay  driver. The overlay  driver is notnot supported for Docker EE.

To configure Docker to use the overlay  storage driver your Docker host must be

running version 3.18 of the Linux kernel (preferably newer) with the overlay kernel

module loaded. For the overlay2  driver, the version of your kernel must be 4.0 or

newer.

Before following this procedure, you must first meet all the prerequisites

(/storage/storagedriver/overlayfs-driver/#prerequisites).

The steps below outline how to configure the overlay2  storage driver. If you need

to use the legacy overlay  driver, specify it instead.

1. Stop Docker.

$ sudo systemctl stop docker

2. Copy the contents of /var/lib/docker  to a temporary location.

$ cp -au /var/lib/docker /var/lib/docker.bk

3. If you want to use a separate backing filesystem from the one used by

/var/lib/ , format the filesystem and mount it into /var/lib/docker .

Make sure add this mount to /etc/fstab  to make it permanent.

https://docs.docker.com/storage/storagedriver/overlayfs-driver/#prerequisites


4. Edit /etc/docker/daemon.json . If it does not yet exist, create it. Assuming

that the file was empty, add the following contents.

{
  "storage-driver": "overlay2"
}

Docker does not start if the daemon.json  file contains badly-formed JSON.

5. Start Docker.

$ sudo systemctl start docker

6. Verify that the daemon is using the overlay2  storage driver. Use the

docker info  command and look for Storage Driver  and

Backing filesystem .

$ docker info

Containers: 0
Images: 0
Storage Driver: overlay2
 Backing Filesystem: xfs
 Supports d_type: true
 Native Overlay Diff: true
<output truncated>

Docker is now using the overlay2  storage driver and has automatically created the

overlay mount with the required lowerdir , upperdir , merged , and workdir

constructs.

Continue reading for details about how OverlayFS works within your Docker

containers, as well as performance advice and information about limitations of its

compatibility with different backing filesystems.

How the overlay2  driver works
If you are still using the overlay  driver rather than overlay2 , see How the

overlay driver works (/storage/storagedriver/overlayfs-driver/#how-the-overlay-

driver-works) instead.

https://docs.docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay-driver-works


OverlayFS layers two directories on a single Linux host and presents them as a single

directory. These directories are called layers and the unification process is referred to

as a union mount. OverlayFS refers to the lower directory as lowerdir  and the

upper directory a upperdir . The unified view is exposed through its own directory

called merged .

The overlay2  driver natively supports up to 128 lower OverlayFS layers. This

capability provides better performance for layer-related Docker commands such as

docker build  and docker commit , and consumes fewer inodes on the backing

filesystem.

Image and container layers on-disk

After downloading a five-layer image using docker pull ubuntu , you can see six

directories under /var/lib/docker/overlay2 .

WarningWarning: Do not directly manipulate any files or directories within

/var/lib/docker/ . These files and directories are managed by Docker.

$ ls -l /var/lib/docker/overlay2

total 24
drwx------ 5 root root 4096 Jun 20 07:36 223c2864175491657d238e266
4251df13b63adb8d050924fd1bfcdb278b866f7
drwx------ 3 root root 4096 Jun 20 07:36 3a36935c9df35472229c57f4a
27105a136f5e4dbef0f87905b2e506e494e348b
drwx------ 5 root root 4096 Jun 20 07:36 4e9fa83caff3e8f4cc83693fa
407a4a9fac9573deaf481506c102d484dd1e6a1
drwx------ 5 root root 4096 Jun 20 07:36 e8876a226237217ec61c4baf2
38a32992291d059fdac95ed6303bdff3f59cff5
drwx------ 5 root root 4096 Jun 20 07:36 eca1e4e1694283e001f200a66
7bb3cb40853cf2d1b12c29feda7422fed78afed
drwx------ 2 root root 4096 Jun 20 07:36 l

The new l  (lowercase L ) directory contains shortened layer identifiers as

symbolic links. These identifiers are used to avoid hitting the page size limitation on

arguments to the mount  command.



$ ls -l /var/lib/docker/overlay2/l

total 20
lrwxrwxrwx 1 root root 72 Jun 20 07:36 6Y5IM2XC7TSNIJZZFLJCS6I4I4 
-> ../3a36935c9df35472229c57f4a27105a136f5e4dbef0f87905b2e506e494e
348b/diff
lrwxrwxrwx 1 root root 72 Jun 20 07:36 B3WWEFKBG3PLLV737KZFIASSW7 
-> ../4e9fa83caff3e8f4cc83693fa407a4a9fac9573deaf481506c102d484dd1
e6a1/diff
lrwxrwxrwx 1 root root 72 Jun 20 07:36 JEYMODZYFCZFYSDABYXD5MF6YO 
-> ../eca1e4e1694283e001f200a667bb3cb40853cf2d1b12c29feda7422fed78
afed/diff
lrwxrwxrwx 1 root root 72 Jun 20 07:36 NFYKDW6APBCCUCTOUSYDH4DXAT 
-> ../223c2864175491657d238e2664251df13b63adb8d050924fd1bfcdb278b8
66f7/diff
lrwxrwxrwx 1 root root 72 Jun 20 07:36 UL2MW33MSE3Q5VYIKBRN4ZAGQP 
-> ../e8876a226237217ec61c4baf238a32992291d059fdac95ed6303bdff3f59
cff5/diff

The lowest layer contains a file called link , which contains the name of the

shortened identifier, and a directory called diff  which contains the layer’s

contents.

$ ls /var/lib/docker/overlay2/3a36935c9df35472229c57f4a27105a136f5
e4dbef0f87905b2e506e494e348b/

diff  link

$ cat /var/lib/docker/overlay2/3a36935c9df35472229c57f4a27105a136f
5e4dbef0f87905b2e506e494e348b/link

6Y5IM2XC7TSNIJZZFLJCS6I4I4

$ ls  /var/lib/docker/overlay2/3a36935c9df35472229c57f4a27105a136f
5e4dbef0f87905b2e506e494e348b/diff

bin  boot  dev  etc  home  lib  lib64  media  mnt  opt  proc  root
  run  sbin  srv  sys  tmp  usr  var

The second-lowest layer, and each higher layer, contain a file called lower , which

denotes its parent, and a directory called diff  which contains its contents. It also

contains a merged  directory, which contains the unified contents of its parent layer

and itself, and a work  directory which is used internally by OverlayFS.



$ ls /var/lib/docker/overlay2/223c2864175491657d238e2664251df13b63
adb8d050924fd1bfcdb278b866f7

diff  link  lower  merged  work

$ cat /var/lib/docker/overlay2/223c2864175491657d238e2664251df13b6
3adb8d050924fd1bfcdb278b866f7/lower

l/6Y5IM2XC7TSNIJZZFLJCS6I4I4

$ ls /var/lib/docker/overlay2/223c2864175491657d238e2664251df13b63
adb8d050924fd1bfcdb278b866f7/diff/

etc  sbin  usr  var

To view the mounts which exist when you use the overlay  storage driver with

Docker, use the mount  command. The output below is truncated for readability.

$ mount | grep overlay

overlay on /var/lib/docker/overlay2/9186877cdf386d0a3b016149cf30c2
08f326dca307529e646afce5b3f83f5304/merged
type overlay (rw,relatime,
lowerdir=l/DJA75GUWHWG7EWICFYX54FIOVT:l/B3WWEFKBG3PLLV737KZFIASSW7
:l/JEYMODZYFCZFYSDABYXD5MF6YO:l/UL2MW33MSE3Q5VYIKBRN4ZAGQP:l/NFYKD
W6APBCCUCTOUSYDH4DXAT:l/6Y5IM2XC7TSNIJZZFLJCS6I4I4,
upperdir=9186877cdf386d0a3b016149cf30c208f326dca307529e646afce5b3f
83f5304/diff,
workdir=9186877cdf386d0a3b016149cf30c208f326dca307529e646afce5b3f8
3f5304/work)

The rw  on the second line shows that the overlay  mount is read-write.

How the overlay  driver works
This content applies to the overlay  driver only. Docker recommends using the

overlay2  driver, which works differently. See How the overlay2 driver works

(/storage/storagedriver/overlayfs-driver/#how-the-overlay2-driver-works) for

overlay2 .

OverlayFS layers two directories on a single Linux host and presents them as a single

directory. These directories are called layers and the unification process is referred to

as a union mount. OverlayFS refers to the lower directory as lowerdir  and the

upper directory a upperdir . The unified view is exposed through its own directory

called merged .

https://docs.docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay2-driver-works


The diagram below shows how a Docker image and a Docker container are layered.

The image layer is the lowerdir  and the container layer is the upperdir . The

unified view is exposed through a directory called merged  which is effectively the

containers mount point. The diagram shows how Docker constructs map to

OverlayFS constructs.

Where the image layer and the container layer contain the same files, the container

layer “wins” and obscures the existence of the same files in the image layer.

The overlay  driver only works with two layers. This means that multi-layered

images cannot be implemented as multiple OverlayFS layers. Instead, each image

layer is implemented as its own directory under /var/lib/docker/overlay . Hard

links are then used as a space-efficient way to reference data shared with lower

layers. The use of hardlinks causes an excessive use of inodes, which is a known

limitation of the legacy overlay  storage driver, and may require additional

configuration of the backing filesystem. Refer to the overlayFS and Docker

performance (/storage/storagedriver/overlayfs-driver/#overlayfs-and-docker-

performance) for details.

To create a container, the overlay  driver combines the directory representing the

image’s top layer plus a new directory for the container. The image’s top layer is the

lowerdir  in the overlay and is read-only. The new directory for the container is the

upperdir  and is writable.

Image and container layers on-disk

The following docker pull  command shows a Docker host downloading a Docker

image comprising five layers.

https://docs.docker.com/storage/storagedriver/overlayfs-driver/#overlayfs-and-docker-performance


$ docker pull ubuntu

Using default tag: latest
latest: Pulling from library/ubuntu

5ba4f30e5bea: Pull complete
9d7d19c9dc56: Pull complete
ac6ad7efd0f9: Pull complete
e7491a747824: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:46fb5d001b88ad904c5c732b086b596b92cfb4a4840a3abd0e3
5dbb6870585e4
Status: Downloaded newer image for ubuntu:latest

THE IMAGE LAYERS

Each image layer has its own directory within /var/lib/docker/overlay/ , which

contains its contents, as shown below. The image layer IDs do not correspond to the

directory IDs.

WarningWarning: Do not directly manipulate any files or directories within

/var/lib/docker/ . These files and directories are managed by Docker.

$ ls -l /var/lib/docker/overlay/

total 20
drwx------ 3 root root 4096 Jun 20 16:11 38f3ed2eac129654acef11c32
670b534670c3a06e483fce313d72e3e0a15baa8
drwx------ 3 root root 4096 Jun 20 16:11 55f1e14c361b90570df46371b
20ce6d480c434981cbda5fd68c6ff61aa0a5358
drwx------ 3 root root 4096 Jun 20 16:11 824c8a961a4f5e8fe4f4243da
b57c5be798e7fd195f6d88ab06aea92ba931654
drwx------ 3 root root 4096 Jun 20 16:11 ad0fe55125ebf599da124da17
5174a4b8c1878afe6907bf7c78570341f308461
drwx------ 3 root root 4096 Jun 20 16:11 edab9b5e5bf73f2997524eebe
ac1de4cf9c8b904fa8ad3ec43b3504196aa3801

The image layer directories contain the files unique to that layer as well as hard links

to the data that is shared with lower layers. This allows for efficient use of disk space.



$ ls -i /var/lib/docker/overlay/38f3ed2eac129654acef11c32670b53467
0c3a06e483fce313d72e3e0a15baa8/root/bin/ls

19793696 /var/lib/docker/overlay/38f3ed2eac129654acef11c32670b5346
70c3a06e483fce313d72e3e0a15baa8/root/bin/ls

$ ls -i /var/lib/docker/overlay/55f1e14c361b90570df46371b20ce6d480
c434981cbda5fd68c6ff61aa0a5358/root/bin/ls

19793696 /var/lib/docker/overlay/55f1e14c361b90570df46371b20ce6d48
0c434981cbda5fd68c6ff61aa0a5358/root/bin/ls

THE CONTAINER LAYER

Containers also exist on-disk in the Docker host’s filesystem under

/var/lib/docker/overlay/ . If you list a running container’s subdirectory using the

ls -l  command, three directories and one file exist:

$ ls -l /var/lib/docker/overlay/<directory-of-running-container>

total 16
-rw-r--r-- 1 root root   64 Jun 20 16:39 lower-id
drwxr-xr-x 1 root root 4096 Jun 20 16:39 merged
drwxr-xr-x 4 root root 4096 Jun 20 16:39 upper
drwx------ 3 root root 4096 Jun 20 16:39 work

The lower-id  file contains the ID of the top layer of the image the container is

based on, which is the OverlayFS lowerdir .

$ cat /var/lib/docker/overlay/ec444863a55a9f1ca2df72223d459c5d940a
721b2288ff86a3f27be28b53be6c/lower-id

55f1e14c361b90570df46371b20ce6d480c434981cbda5fd68c6ff61aa0a5358

The upper  directory contains the contents of the container’s read-write layer, which

corresponds to the OverlayFS upperdir .

The merged  directory is the union mount of the lowerdir  and upperdir , which

comprises the view of the filesystem from within the running container.

The work  directory is internal to OverlayFS.

To view the mounts which exist when you use the overlay  storage driver with

Docker, use the mount  command. The output below is truncated for readability.



$ mount | grep overlay

overlay on /var/lib/docker/overlay/ec444863a55a.../merged
type overlay (rw,relatime,lowerdir=/var/lib/docker/overlay/55f1e14
c361b.../root,
upperdir=/var/lib/docker/overlay/ec444863a55a.../upper,
workdir=/var/lib/docker/overlay/ec444863a55a.../work)

The rw  on the second line shows that the overlay  mount is read-write.

How container reads and writes work with
overlay  or overlay2

Reading files

Consider three scenarios where a container opens a file for read access with overlay.

The file does not exist in the container layerThe file does not exist in the container layer: If a container opens a file

for read access and the file does not already exist in the container ( upperdir )

it is read from the image ( lowerdir) . This incurs very little performance

overhead.

The file only exists in the container layerThe file only exists in the container layer: If a container opens a file for

read access and the file exists in the container ( upperdir ) and not in the

image ( lowerdir ), it is read directly from the container.

The file exists in both the container layer and the image layerThe file exists in both the container layer and the image layer: If a

container opens a file for read access and the file exists in the image layer and

the container layer, the file’s version in the container layer is read. Files in the

container layer ( upperdir ) obscure files with the same name in the image

layer ( lowerdir ).

Modifying files or directories

Consider some scenarios where files in a container are modified.

Writing to a file for the first timeWriting to a file for the first time: The first time a container writes to an

existing file, that file does not exist in the container ( upperdir ). The

overlay / overlay2  driver performs a copy_up operation to copy the file

from the image ( lowerdir ) to the container ( upperdir ). The container then

writes the changes to the new copy of the file in the container layer.



However, OverlayFS works at the file level rather than the block level. This

means that all OverlayFS copy_up operations copy the entire file, even if the file

is very large and only a small part of it is being modified. This can have a

noticeable impact on container write performance. However, two things are

worth noting:

The copy_up operation only occurs the first time a given file is written to.

Subsequent writes to the same file operate against the copy of the file

already copied up to the container.

OverlayFS only works with two layers. This means that performance

should be better than AUFS, which can suffer noticeable latencies when

searching for files in images with many layers. This advantage applies to

both overlay  and overlay2  drivers. overlayfs2  is slightly less

performant than overlayfs  on initial read, because it must look

through more layers, but it caches the results so this is only a small

penalty.

Deleting files and directoriesDeleting files and directories:

When a file is deleted within a container, a whiteout file is created in the

container ( upperdir ). The version of the file in the image layer

( lowerdir ) is not deleted (because the lowerdir  is read-only).

However, the whiteout file prevents it from being available to the

container.

When a directory is deleted within a container, an opaque directory is

created within the container ( upperdir ). This works in the same way as

a whiteout file and effectively prevents the directory from being

accessed, even though it still exists in the image ( lowerdir ).

Renaming directoriesRenaming directories: Calling rename(2)  for a directory is allowed only

when both the source and the destination path are on the top layer. Otherwise,

it returns EXDEV  error (“cross-device link not permitted”). Your application

needs to be designed to handle EXDEV  and fall back to a “copy and unlink”

strategy.

OverlayFS and Docker Performance
Both overlay2  and overlay  drivers are more performant than aufs  and

devicemapper . In certain circumstances, overlay2  may perform better than

btrfs  as well. However, be aware of the following details.



Page CachingPage Caching. OverlayFS supports page cache sharing. Multiple containers

accessing the same file share a single page cache entry for that file. This makes

the overlay  and overlay2  drivers efficient with memory and a good

option for high-density use cases such as PaaS.

copy_upcopy_up. As with AUFS, OverlayFS performs copy-up operations whenever a

container writes to a file for the first time. This can add latency into the write

operation, especially for large files. However, once the file has been copied up,

all subsequent writes to that file occur in the upper layer, without the need for

further copy-up operations.

The OverlayFS copy_up  operation is faster than the same operation with

AUFS, because AUFS supports more layers than OverlayFS and it is possible to

incur far larger latencies if searching through many AUFS layers. overlay2

supports multiple layers as well, but mitigates any performance hit with

caching.

Inode limitsInode limits. Use of the legacy overlay  storage driver can cause excessive

inode consumption. This is especially true in the presence of a large number of

images and containers on the Docker host. The only way to increase the

number of inodes available to a filesystem is to reformat it. To avoid running

into this issue, it is highly recommended that you use overlay2  if at all

possible.

Performance best practices

The following generic performance best practices also apply to OverlayFS.

Use fast storageUse fast storage: Solid-state drives (SSDs) provide faster reads and writes

than spinning disks.

Use volumes for write-heavy workloadsUse volumes for write-heavy workloads: Volumes provide the best and

most predictable performance for write-heavy workloads. This is because they

bypass the storage driver and do not incur any of the potential overheads

introduced by thin provisioning and copy-on-write. Volumes have other

benefits, such as allowing you to share data among containers and persisting

your data even if no running container is using them.

Limitations on OverlayFS compatibility
To summarize the OverlayFS’s aspect which is incompatible with other filesystems:



open(2)open(2): OverlayFS only implements a subset of the POSIX standards. This can

result in certain OverlayFS operations breaking POSIX standards. One such

operation is the copy-up operation. Suppose that your application calls

fd1=open("foo", O_RDONLY)  and then fd2=open("foo", O_RDWR) . In this

case, your application expects fd1  and fd2  to refer to the same file.

However, due to a copy-up operation that occurs after the second calling to

open(2) , the descriptors refer to different files. The fd1  continues to

reference the file in the image ( lowerdir ) and the fd2  references the file in

the container ( upperdir ). A workaround for this is to touch  the files which

causes the copy-up operation to happen. All subsequent open(2)  operations

regardless of read-only or read-write access mode reference the file in the

container ( upperdir ).

yum  is known to be affected unless the yum-plugin-ovl  package is

installed. If the yum-plugin-ovl  package is not available in your distribution

such as RHEL/CentOS prior to 6.8 or 7.2, you may need to run

touch /var/lib/rpm/*  before running yum install . This package

implements the touch  workaround referenced above for yum .

rename(2)rename(2): OverlayFS does not fully support the rename(2)  system call.

Your application needs to detect its failure and fall back to a “copy and unlink”

strategy.

container (https://docs.docker.com/glossary/?term=container), storage
(https://docs.docker.com/glossary/?term=storage), driver
(https://docs.docker.com/glossary/?term=driver), OverlayFS
(https://docs.docker.com/glossary/?term=OverlayFS), overlay2
(https://docs.docker.com/glossary/?term=overlay2), overlay
(https://docs.docker.com/glossary/?term=overlay)

https://docs.docker.com/glossary/?term=container
https://docs.docker.com/glossary/?term=storage
https://docs.docker.com/glossary/?term=driver
https://docs.docker.com/glossary/?term=OverlayFS
https://docs.docker.com/glossary/?term=overlay2
https://docs.docker.com/glossary/?term=overlay

