
06/12/2018, 11)41Setting up MySQL replication without the downtime

Page 1 of 4https://plusbryan.com/mysql-replication-without-downtime

Setting up MySQL replication
without the downtime
I clearly don’t need to expound on the benefits of master-slave replication
for your MySQL database. It’s simply a good idea; one nicety I looked
forward to was the ability to run backups from the slave without impacting
the performance of our production database. But the benefits abound.

Most tutorials on master-slave replication use a read lock to accomplish a
consistent copy during initial setup. Barbaric! With our users sending
thousands of cards and gifts at all hours of the night, I wanted to find a way
to accomplish the migration without any downtime.

@pQd via ServerFault suggests enabling bin-logging and taking a non-
locking dump with the binlog position included. In effect, you’re creating a
copy of the db marked with a timestamp, which allows the slave to catch up
once you’ve migrated the data over. This seems like the best way to set up
a MySQL slave with no downtime, so I figured I’d document the step-by-step
here, in case it proves helpful for others.

First, you’ll need to configure the master’s /etc/mysql/my.cnf by adding
these lines in the [mysqld] section:

server-id=1
binlog-format = mixed
log-bin=mysql-bin
datadir=/var/lib/mysql
innodb_flush_log_at_trx_commit=1
sync_binlog=1

JANUARY 24, 2013

BRYAN KENNEDY

https://plusbryan.com/mysql-replication-without-downtime
http://www.clusterdb.com/mysql-cluster/get-mysql-replication-up-and-running-in-5-minutes/
http://www.howtoforge.com/mysql_database_replication
http://serverfault.com/questions/220322/how-to-setup-mysql-replication-with-minimal-downtime
https://plusbryan.com/
https://plusbryan.com/
https://plusbryan.com/mysql-replication-without-downtime#menu

06/12/2018, 11)41Setting up MySQL replication without the downtime

Page 2 of 4https://plusbryan.com/mysql-replication-without-downtime

Restart the master mysql server and create a replication user that your slave
server will use to connect to the master:

CREATE USER replicant@<<slave-server-ip>>;
GRANT REPLICATION SLAVE ON *.* TO replicant@<<slave-server-ip>>
IDENTIFIED BY '<<choose-a-good-password>>';

Note: Mysql allows for passwords up to 32 characters for replication users.

Next, create the backup file with the binlog position. It will affect the
performance of your database server, but won’t lock your tables:

mysqldump --skip-lock-tables --single-transaction --flush-logs --hex-
blob --master-data=2 -A > ~/dump.sql

Now, examine the head of the file and jot down the values for
MASTER_LOG_FILE and MASTER_LOG_POS. You will need them later:

head dump.sql -n80 | grep "MASTER_LOG_POS"

Because this file for me was huge, I gzip'ed it before transferring it to the
slave, but that’s optional:

gzip ~/dump.sql

Now we need to transfer the dump file to our slave server (if you didn’t gzip
first, remove the .gz bit):

scp ~/dump.sql.gz mysql-user@<<slave-server-ip>>:~/

While that’s running, you should log into your slave server, and edit your
/etc/mysql/my.cnf file to add the following lines:

server-id = 101
binlog-format = mixed
log_bin = mysql-bin
relay-log = mysql-relay-bin

06/12/2018, 11)41Setting up MySQL replication without the downtime

Page 3 of 4https://plusbryan.com/mysql-replication-without-downtime

log-slave-updates = 1
read-only = 1

Restart the mysql slave, and then import your dump file:

gunzip ~/dump.sql.gz
mysql -u root -p < ~/dump.sql

Log into your mysql console on your slave server and run the following
commands to set up and start replication:

CHANGE MASTER TO MASTER_HOST='<<master-server-
ip>>',MASTER_USER='replicant',MASTER_PASSWORD='<<slave-server-
password>>', MASTER_LOG_FILE='<<value from above>>', MASTER_LOG_POS=
<<value from above>>;
START SLAVE;

To check the progress of your slave:

SHOW SLAVE STATUS \G

If all is well, Last_Error will be blank, and Slave_IO_State will report “Waiting
for master to send event”. Look for Seconds_Behind_Master which
indicates how far behind it is. It took me a few hours to accomplish all of the
above, but the slave caught up in a matter of minutes. YMMV.

And now you have a newly minted mysql slave server without experiencing
any downtime!

A parting tip: Sometimes errors occur in replication. For example, if you
accidentally change a row of data on your slave. If this happens, fix the data,
then run:

 STOP SLAVE;SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1;START SLAVE;

Update: In following my own post when setting up another slave, I ran into
an issue with authentication. The slave status showed an error of 1045

06/12/2018, 11)41Setting up MySQL replication without the downtime

Page 4 of 4https://plusbryan.com/mysql-replication-without-downtime

NOW READ THIS

Stealing is the future of retail
I stole something from the Apple Store today. Or rather, it felt a lot like stealing. I walked in,
found what I wanted, opened the “Apple Store” app, scanned the barcode, and walked out.
It seemed so much like stealing, I felt a little... Continue →

SVBTLE

Terms • Privacy • Promise

(credential error) even though I was able to directly connect using the
replicant credentials. It turns out that MySQL allows passwords up to 32
characters in length for master-slave replication.

Update #2: An astute reader noted that he ran into a “MySQL server has
gone away” error while running the initial dump. The solution he found was
to add the following during the import on slave:

 [mysqld]
 max_allowed_packet=16M

4,747 KUDOS

@plusbryan aboutbryan.comBRYAN KENNEDY

4,747
KUDOS

https://svbtle.com/
https://plusbryan.com/stealing
https://svbtle.com/terms
https://svbtle.com/privacy
https://svbtle.com/promise
https://plusbryan.com/mysql-replication-without-downtime#kudo
https://twitter.com/plusbryan
https://aboutbryan.com/
https://plusbryan.com/
https://plusbryan.com/
https://plusbryan.com/mysql-replication-without-downtime#kudo

