
MySQL Replication Setup Guide V1.1 DS

	

	 Page 1 of 8

MYSQL Database Replication Setup

Why replicate ? You can back up your MySQL database using the
built-in dump tool, but the second you do that the backup is out of
date. If your database is large then while the backup is taking place
all of it’s tables are locked, stopping any service from reading or writing
to that database. In a 24/7 worldwide service this backup time will
mean downtime for someone, somewhere in the world.

A simple solution is database replication, which keeps a real-time copy
of the database on a remote server. With this in place, if something
happens to the primary database, it will be much easier to get your
database back up and running with current information. Backups can
take place on the replica without downtime of the main database and
once the backup has completed the replica will catch up with any
changes that occurred on the Master during it’s absence
automatically.

This is what you’ll need to set up MySQL database replication:

• At least Two correctly configured MySQL servers
• Root access and access to the database administrator on both

servers

The setup will use two machines: the Master and the Slave. We’ll start
with the setup of the Master.

Before I start this guide I would like to bring up the fact that every OS
has a different place for the main config file for MySQL that you’ll need
to edit in this guide.

In Ubuntu it’s located in /etc/mysql/my.cnf, in Centos/RHEL it’s in
/etc/my.cnf and on OS X it does not exist and one must be copied to
/etc/my.cnf from the MySQL install directory.

Configure the Master

Stop any process that may update the database your going to
replicate. This is required as we will need a fixed point in time backup
so that we can clone the database to the Slaves. For example if this is
the JAMF JSS Server database stop tomcat7.

The next step is to enable MySQL for networking. Not all OS’s need to
do this. Open the file /etc/mysql/my.conf, look for the following lines,
and uncomment them if they exist:

#skip-networking
#bind-address = 127.0.0.1

MySQL Replication Setup Guide V1.1 DS

	

	 Page 2 of 8

If the lines do not exist, you many need to add them (minus the “#”).

Within the same file, we have to make MySQL aware of the database
that will be replicated. You can do this with these lines:

log-bin = /var/log/mysql/mysql-bin.log
binlog-do-db=DATABASE_TO_BE_REPLICATED
server-id=1

DATABASE_TO_BE_REPLICATED is the actual name of the database
you want to replicate.

The above lines tell MySQL the following:

Line 1: Configures the log file to be used. This uses the Binary Log
System and as such these will get large. Look at PURGE BINARY LOGS
later in this document.

Line 2: Configures the database to be logged and as such replicated.
Without this ALL databases on the server will have all of there actions
logged and result in MASSIVE log files and data that must NEVER be
replicated being sent to the Slave server, such as Schema database
entries. If this is not set you can use replicate-do-db on the Slave
server to specify which Database to replicate. This is ok but as the
Binary Log is logging ALL actions those logs will grow quickly.

Line 3: Configures the machine with a unique ID. Each MySQL server
needs a unique ID. Zero is not a valid ID

After you add these lines, save the my.cnf file and restart MySQL. On
Centos/RHEL and Ubuntu you can use the command
/etc/inid.t/mysqld restart or you can restart the MySQL daemon
is using the service command. Centos/RHEL is service mysqld
restart. Ubuntu is service mysql restart

OS X is a bit different, as always. 10.7 and 10.8 server don’t come with
MySQL in the OS and it needs to be installed from the MySQL
distribution. This comes with a Startup Item to auto start the MySQL
process. This is a very outdated way of starting processes in OS X.

With this configuration complete, it’s time to set up a user for
replication privileges. Log on to the Master and from the command
line issue the command mysql -u root -p

MySQL Replication Setup Guide V1.1 DS

	

	 Page 3 of 8

Enter the password for the MySQL admin password. Upon successful
authentication, you will be at the MySQL prompt, where you will enter
the command GRANT REPLICATION SLAVE ON *.* TO ‘USER’@'%’
IDENTIFIED BY ‘PASSWORD’;

USER is the user who will have replication privileges, and the PASSWORD
is that user’s MySQL password. The USER will be made if not present.

With that command issued, you must flush the database privileges with
the command FLUSH PRIVILEGES;

Make sure MySQL can see the Master with the command SHOW
MASTER STATUS;

This command should list information (including the all-important
position number, which will be required for the Slave setup) for the
database to be replicated. You need to write down that information,
which will look something like this:

File: mysql-bin.00002
Position: 230
Binlog_Do_DB: database_to_be_replicated
Binlog_Ignore_DB:
1 row in set (0.00 sec)

The next step is to retrieve the tables and data from the database to
be replicated; in order to do this, the database must be temporarily
locked. When the database is locked, it cannot be used, so do this at a
time when the database won’t be needed.

To lock the database, issue the command FLUSH TABLES WITH READ
LOCK;

You must dump the database that will be copied to the Slave. There
used to be a command LOAD DATA FROM MASTER, but that command
has been deprecated as it could kill a server if the database was
massive. So, to get the data you can do it one of two ways.

Using MySQLDump

The First way is to do a dump with the command
mysqldump -u root -p DATABASE_TO_BE_REPLICATED >
DATABASE_TO_BE_REPLICATED.sql where
DATABASE_TO_BE_REPLICATED is the name of the actual database

MySQL Replication Setup Guide V1.1 DS

	

	 Page 4 of 8

being replicated. You’ll be prompted for the MySQL admin password;
enter that password, and the dump will process.

Now unlock the tables with the command UNLOCK TABLES; and then
quit from MySQL.

Copy that database dump file to the Slave and then restore the
database (on the SLAVE) with the command mysql -u root -p
DATABASE_TO_BE_REPLICATED < DATABASE_TO_BE_REPLICATED.sql
where DATABASE_TO_BE_REPLICATED is the name of the database
being replicated.

Using Raw Data Files

To create a raw data snapshot of MyISAM tables you can use
standard copy tools such as cp or copy , a remote copy tool such as
scp or rsync , an archiving tool such as zip or tar , or a file system
snapshot tool such as dump , providing that your MySQL data files exist
on a single file system. If you are replicating only certain databases
then make sure you copy only those files that related to those tables.
(For InnoDB , all tables in all databases are stored in the shared
tablespace files, unless you have the innodb_file_per_table option
enabled.)
You may want to specifically exclude the following files from your
archive:

• Files relating to the mysql database.
• The master.info file.
• The master's binary log files.
• Any relay log files.

To get the most consistent results with a raw data snapshot you should
shut down the master server during the process, as follows:

1. Note the Masters Details with SHOW MASTER STATUS;
2. Lock the databases using FLUSH TABLES WITH READ LOCK;
3. Quit MySQL and Shut down the master server with mysqladmin

shutdown at the command line
4. Make a copy of the MySQL data files. The following examples

show common ways to do this. You need to choose only one of
them:
tar cf /tmp/db.tar ./data
zip -r /tmp/db.zip ./data
rsync --recursive ./data /tmp/dbdata

5. Restart the master server.

MySQL Replication Setup Guide V1.1 DS

	

	 Page 5 of 8

If you are not using InnoDB tables, you can get a snapshot of the
system from a master without shutting down the server as described in
the following steps:

1. Note the Masters Details with SHOW MASTER STATUS;
2. Lock the databases using FLUSH TABLES WITH READ LOCK;
3. Make a copy of the MySQL data files. The following examples

show common ways to do this. You need to choose only one of
them:
tar cf /tmp/db.tar ./data
zip -r /tmp/db.zip ./data
rsync --recursive ./data /tmp/dbdata

4. In the client where you acquired the read lock, release the lock
using UNLOCK TABLES;

Once you have created the archive or copy of the database, you will
need to copy the files to each slave before starting the slave
replication process.

Configure the Slave(s)

In order to configure the Slave, open the my.cnf file, add the following,
and save and close that file:
server-id=2
master-host=IP_ADDRESS_OF_MASTER
master-user=USER
master-password=USER_PASSWORD
master-connect-retry=60
replicate-do-db=DATABASE

Where:

• server-id is a Unique id number for this instance of MySQL in
your replication setup

• IP_ADDRESS_OF_MASTER is the actual IP address of the Master
server.

• USER is the database administrator with replication privileges.
• USER_PASSWORD is the password associated with the USER.
• DATABASE is the name to be replicated.

Depending on your MySQL version, adding the master- and the
replicate-do-db configuration to the my.cnf may result in MySQL
failing to start. If you find your having this problem remove those lines
and just leave the server-id in the my.cnf file. The Slave
configuration will be setup in the master.info file by running the CHANGE
MASTER TO command in the next step.

MySQL Replication Setup Guide V1.1 DS

	

	 Page 6 of 8

NOTE: MySQL 5.6 includes a couple new options that allow you to store
replication master and relay information in tables instead of in the
respective master.info and relay-log.info files that have been used
historically. This appears to be partly under the guise of increased
security, particularly in the case of the master info "repository", if the
"Note" we get from CHANGE MASTER TO is to be believed. However, it's
important to note that using --master-info-repository=TABLE really offers
no security benefit of any kind.

This next step requires information returned from the SHOW MASTER
STATUS; command that was run on the Master. Stop the Slave by
issuing these commands:
mysql -u root -p
SLAVE STOP;

Then run the following command:
CHANGE MASTER TO MASTER_HOST=’IP_ADDRESS_OF_MASTER’,
MASTER_USER=’USER’, MASTER_PASSWORD=’USER_PASSWORD’,
MASTER_LOG_FILE=’mysql-bin.007′, MASTER_LOG_POS=NUMBER;
Where the following applies:

• IP_ADDRESS_OF_MASTER is the actual IP address of the Master
• USER is the MySQL replication USER made earlier
• USER_PASSWORD is the password for the replication USER
• NUMBER is the Position Number reported from the SHOW MASTER

STATUS command.

Restart the Slave by issuing the command SLAVE START; and then exit
the MySQL prompt with the command quit.

You can follow these steps to make sure everything is working:
Issue the command on the slave:
mysql -u root -p
SHOW SLAVE STATUS\G

You should see something contaning this:
Slave_IO_Running: Yes
Slave_SQL_Running: Yes

If the status of both the above are Yes, you now have a working,
replicated MySQL database. Repeat for each slave you wish to setup.

Admin Commands for Replication

You can see details regarding a slave by login into MySQL on a slave
and issuing :

MySQL Replication Setup Guide V1.1 DS

	

	 Page 7 of 8

SHOW SLAVE STATUS\G

This will display all the status you should need. Note the \G at the end
of the command. This is not a typo buy forces a carriage return instead
of a semi colon so make the output readable. Try with the normal semi
colon to see the difference!

To pause replication, stop or restart a Slave processing the Masters
binary log you can login into MySQL on a slave and issue:
STOP SLAVE;
START SLAVE;

To stop a Slave being a Slave and to make it a standalone login into
MySQL on a slave and use:
RESET SLAVE;

To see the Master servers status login into MySQL on the Master and
issue:
SHOW MASTER STATUS;

Log Files

Replication uses the Binary Log system in MySQL. The binary log is a set
of files that contain information about data modifications made by the
MySQL server. The log consists of a set of binary log files, plus an index
file. These logs can get very large and may need manual purging from
time to time, as it is not automatically done by default. This can be
setup as detailed later on.

The PURGE BINARY LOGS statement deletes all the binary log files listed
in the log index file prior to the specified log file name or date. BINARY
and MASTER are synonyms. Deleted log files also are removed from the
list recorded in the index file, so that the given log file becomes the first
in the list.

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2008-04-02 22:46:26';

The BEFORE variant's argument should evaluate to a DATETIME value (a
value in 'YYYY-MM-DD hh:mm:ss' format).
This statement is safe to run while slaves are replicating. You need not
stop them. If you have an active slave that currently is reading one of
the log files you are trying to delete, this statement does nothing and
fails with an error. However, if a slave is not connected and you
happen to purge one of the log files it has yet to read, the slave will be

MySQL Replication Setup Guide V1.1 DS

	

	 Page 8 of 8

unable to replicate after it reconnects.

To safely purge binary log files, follow this procedure:

• On each slave server, use SHOW SLAVE STATUS; to check which
log file it is reading.

• Obtain a listing of the binary log files on the master server with
SHOW BINARY LOGS;

• Determine the earliest log file among all the slaves. This is the
target file. If all the slaves are up to date, this is the last log file on
the list.

• Make a backup of all the log files you are about to delete. (This
step is optional, but always advisable.)

• Purge all log files up to but not including the target file.

You are advised to set the expire_logs_days system variable to
expire binary log files automatically after a given number of days. You
should set the variable no lower than the maximum number of days
your slaves might lag behind the master. The default is 0, which means
“no automatic removal”. You can also set a maximum file size for the
log files and they will be rotated when the file reaches that size. The
Default is 1GB.

It’s best to add this to the my.cnf config file by adding the line:
expire_logs_days = 14
max_binlog_size = 524288000

You can check this by using:
show variables like "expire%";

To delete all binary logs older than 7 days:
PURGE BINARY LOGS BEFORE DATE_SUB(NOW(), INTERVAL 7
DAY);

To automate the log purging, setup a cron job or a LaunchD daemon
to run the following

mysql -uroot -ppasswd -e “PURGE BINARY LOGS BEFORE
DATE_SUB(NOW(), INTERVAL 7 DAY);”

